Table of Contents
Your Therapy Source Digital Magazine December 2017

HOW TO GET STUDENTS READY TO LEARN AFTER BRAIN BREAKS OR RECESS .. 3
MOTOR PLANNING AND CEREBRAL PALSY .. 5
LINK BETWEEN READING, VISUAL PERCEPTION, AND VISUAL–MOTOR INTEGRATION 7
ONE SIMPLE WAY TO IMPROVE PARTICIPATION .. 9
TEACHING THROWING AND CATCHING TO CHILDREN WITH DCD .. 11
FINE MOTOR SKILLS LINKED TO NUMERICAL SKILL DEVELOPMENT .. 13
MOTOR OVERFLOW IN PRESCHOOL CHILDREN .. 15
EFFECTS OF YOGA ON AUTISM SYMPTOMS ... 17
HOW TO WRITE A SOCIAL STORY WITH VISUAL SUPPORTS ... 19
FINE MOTOR SKILLS, VISUAL FUNCTION, AND READING IN CHILDREN .. 22
LESS AFFECTED HAND IN UNILATERAL CEREBRAL PALSY .. 23
GROSS MOTOR SKILLS, POSTURAL STABILITY, AND AUTISM ... 25
YOUNG PEOPLE’S ATTITUDES ABOUT STANDING FRAMES .. 26
COLOR CUT GLUE FOR DECEMBER – SCISSOR SKILLS PRACTICE .. 29
ELEPHANT HOLIDAY HAT – SCISSOR AND FINE MOTOR ACTIVITY ... 30
DIRECTIONALITY WORKSHEET – WHICH WAY IS THE ANIMAL FACING? ... 31
Do your students have trouble settling down after brain breaks or recess time? Maybe you are hesitant to incorporate movement into the school day because you loathe the aftermath of getting the high energy students to return to academic work. Research indicates that students learn better after movement breaks. Therapists, teachers, and parents know this but squeezing in brain breaks and recess can be difficult when students have high academic workloads. To improve student’s behaviors after brain breaks one of the easiest ways is to follow the same brain break routine every time so everyone knows what to expect. BUT, have you ever considered your own behaviors or actions regarding how your students react following movement breaks? Our actions, behaviors and emotional states significantly influence the outcomes of children.

Here are suggestions to change your own actions as the adult to help students get ready to learn after brain breaks or recess:

1. Talk in a low, calm voice. If we start the lesson or activity out with a quiet, low, calm tone of voice children will model our behavior.
2. Minimize your own movement. Stay in one place while you instruct the class so the students can direct their focus to one location.
3. Minimize your own gestures. Try not to only stay in one place but also try to start the lesson out minimizing your gestures. Avoid talking with your hands, pointing and general fidgeting yourself.
4. Change the lighting. If possible dim the lighting to encourage the students to return to a calm state with their bodies ready to learn.
5. Direct the student’s attention to an area that is organized, clutter-free and has limited visual distractions. Perhaps have an area in the room that has decreased visual input. Position yourself in that area so the students can focus their attention directly on you.

Not only are these suggestions suitable for after brain breaks or recess, but they can be applied to anytime you need to have children learning a new skill.

Here are several more suggestions to help get students ready to learn:

Help students who continue to fidget.
Offer students self-assessment checklist to determine if they are ready to learn.
Provide Ready to Work Clip Charts.
Teach deep breathing exercises to help calm the class.
Provide different calming strategies for students.
Offer alternative seating.

Breathing Breaks: This digital download is a collection of 16 deep breathing exercises and 3 tip sheets. Deep breathing exercises can help to decrease stress, reduce anxiety, remain calm, strengthen sustained attention, sharpen the ability to learn and more! This packet includes 16 full page breathing exercises and 3 tips sheets in color or black and white. In addition, the breathing exercises are provided 4 to a page to make smaller cards or booklets. FIND OUT MORE INFORMATION.
The Journal of Clinical and Experimental Neuropsychology recently published longitudinal research on motor planning and cerebral palsy. Motor planning is the ability to plan out all the steps required for a motor action and carry out each step in the correct order. It is important to have efficient motor planning to produce coordinated movements. The researchers defined motor planning as “selecting a single pattern of behavior from many alternatives that allows the performer to achieve a task goal”. This study included 22 children with cerebral palsy and 22 age-matched controls. Each participant performed a bar transport task in which some conditions (“critical angles”) required participants to sacrifice initial posture comfort in order to achieve end-state comfort. The longitudinal study was carried out with three measurements each separated by one year.

The following results were reported:

- children with CP showed poor end-state planning for critical angles.
- unlike in controls, motor planning ability did not improve across the three measurement occasions in children with CP.

The researchers concluded that children with cerebral palsy may have motor planning deficits that do not resolve with development over childhood.
Suggested Strategies for Intervention

Some research suggests that children with cerebral palsy may improve motor planning skills through training due to plasticity in the brain. Current training for motor planning includes physical training and environmental stimulation. New research with adults following brain injury and children with congenital motor disorders indicated two beneficial types of motor planning training:

1. Motor Imagery – internal rehearsal of a future motor action without overt motor output. Motor imagery requires the conscious activation of brain regions that are also involved in the actual movement preparation and execution.
2. Action Observation – observation of the action performed by someone.

Deficits in motor planning in children with cerebral palsy do not appear to resolve throughout development. Researchers suggest physical training, environmental stimulation, motor imagery and action observation to help with motor planning and cerebral palsy.

Go here for more blog posts on motor planning.

Therapeutic Play Activities for Children digital download includes 100 play activity pages and 12 tip sheets. The play activities encourage the development of fine motor skills, bimanual skills, rolling, crawling, tall kneeling, standing balance and cruising with a strong focus on children with cerebral palsy. FIND OUT MORE INFORMATION.

Teaching Motor Skills to Children with Cerebral Palsy and Similar Movement Disorders: The ELECTRONIC version of *Teaching Motor Skills* is a must-have reference for all therapists who work with children with cerebral palsy. FIND OUT MORE.
Decoding written words is a key component to developing the ability to read. In order to decode, children need adequate visual perceptual skills. Recent research published in *Dyslexia* discussed the link between reading, visual perception, and visual–motor integration using the Developmental Test of Visual Perception version 2 (DTVP-2). The study examined three parts:

1) how did visual perception and visual–motor integration in kindergarten predict reading outcomes in neurotypical Grade 1 students.

2) if the skills can be seen as clinical markers in children with dyslexia.

3) if visual–motor integration and motor-reduced visual perception can distinguish children with dyslexia depending upon whether they exhibited developmental coordination disorder.

The results of the study indicated the following:
• phonological awareness and visual–motor integration predicted reading outcomes one year later.
• DTVP-2 demonstrated similarities and differences in visual–motor integration and motor-reduced visual perception between children with DD, DCD, and both of these deficits.

The researchers concluded that the DTVP-2 is a suitable tool to examine links between visual perception, visual–motor integration and reading, and to differentiate cognitive signs of children with developmental disabilities.

Looking for activities to practice visual perceptual skills and visual motor integration? Check out these titles:

Hole Punch Palooza – combine visual perceptual, visual motor, letter recognition and hand strengthening with this digital download. It includes 26 capital letter strips, 26 lowercase letter strips, 16 pre-writing strips, 12 visual discrimination strips, 4 counting strips, 4 prepositional phrase strips and 4 hole punch race strips. Once printed, children can trace the letters, write the letters and hole punch the matching letters. All the hole punch strips are in black and white. Hole Punch Palooza encourages: hand strengthening, handwriting and drawing practice, visual discrimination skills, visual motor skills, right/left discrimination and bilateral coordination.

Visual Motor Exercises – This digital download includes 25 long mazes and patterns to print, assemble and complete to practice pencil control. Once the pattern/maze is assembled it is 28 inches in length. This length encourages the child to cross the midline and to rotate the head (vestibular input) while completing the visual motor exercise. The patterns and mazes vary in difficulty from easy to hard with horizontal, vertical, diagonal, curves and circular patterns. The patterns/mazes are all in black and white. There is a step by step direction sheet with color photos for the children to follow along.
Do you struggle to get children to participate in certain activities? Do you find it hard to engage children in non-preferred or difficult tasks? Perhaps the children do not follow your directions or do not remain on task. This makes it difficult for children to learn new skills to participate in activities of daily living, academic tasks or social interactions. Many times, positive reinforcement is used and children are rewarded after they complete the task appropriately.

Have you ever considered trying to avoid these behaviors before they even start? One simple way to improve participation is to offer children choices to prevent non-compliance. This helps to avoid the behaviors before they occur. Research indicates that by offering interventions before the behaviors occur may help to limit avoidance of tasks and interfering behaviors. In addition, it helps to promote an environment where children are ready to learn. Offering children choices before the task has been shown to reduce disruptive behaviors, increase task engagement and decrease the amount of time to complete the task. Although there is a risk that children may avoid less-preferred tasks.

Recent research in the Journal of Special Education evaluated the effects of choice of a less preferred task sequence (i.e. wash dishes, communicate with classmate, complete puzzle, etc) on noncompliance, task engagement, and duration to complete activities across two individuals with autism spectrum disorder and one
participant with a speech and language impairment. The results indicated the following:
- choice of task sequence effectively reduced noncompliance in two participants.
- choice was initially effective although treatment effects failed to replicate in the third participant.
- task engagement was greater during choice than the no-choice condition for only one participant.
- there were no changes in duration to complete tasks.

The researchers concluded that providing choice before a low-preferred task sequence was effective at reducing noncompliant behavior.

Are you looking for other strategies besides providing choices to help improve compliance in the classroom? **Typical Classroom Sensory-Based Problem Behaviors & Suggested Therapeutic Interventions** offers many suggestions for therapeutic interventions for 12 different problem behavior categories.
Research indicates that children with Developmental Coordination Disorder (DCD) exhibit significant impairments in general visual motor control and the processing of visual information. For example, children with DCD have difficulties with: the ability to use predictive information to guide action, the pursuit tracking of objects and the ability to maintain fixation on visual targets. These impairments can affect the child’s motor skill abilities when participation in ball sports and playground games.

Quiet eye training (QET) has been used in the past to help children improve their throwing and catching skills. Recent research investigated whether teaching throwing and catching to a group of children with DCD using a gaze training intervention (i.e., QET) could improve their skills and help decrease the negative psychosocial impact of motor skill deficits. The participants included 21 children with DCD who were split into either QET or technical training (TT) groups. Both groups participated in the same activities with video instruction to start. The QET received additional training on focusing on the target before throwing. Both groups received 4 weeks of group therapy. Assessments were completed before and after training and at a 6 week follow up.
Over four-week sessions for the QET group, the children were given instructions each week:

1. Week one: Focus your eyes on the target and count to two before you start your smooth throwing action.
2. Week two: Keep your eyes on the ball until it comes back into your cupped hands.
3. Week three: Questioning on previous instructions and combining instruction points together.
4. Week four: Questioning and review.

The results indicated the following:

- children improved their gaze control and catching coordination following QET, compared to TT.
- a longer QE aiming duration (QE1) predicted an earlier onset of tracking the ball prior to catching (QE2) which predicted catching success.
- parents reported improved perceptions of their child’s catching ability and general coordination in the QET group compared to the TT group.
- all parents reported improvements in their child’s confidence, social skills and predilection for physical activity following the trial.

The researchers concluded that quiet eye training may help to address deficits in the motor and psychosocial skills of children with DCD.

Read more about quiet eye training.

Do you need help teaching children to catch, throw and kick? Teaching Catching, Throwing and Kicking Skills: Help children learn how to catch, throw and kick with this packet full of information of age progression of skills, visual picture cards, tips, letter to parents and more! FIND OUT MORE INFORMATION.
When you walk into any preschool classroom, you will observe children using their fingers to count. Finger counting helps children to represent numbers and later influences the ability to complete arithmetic problems. The ability to count usually develops side by side with fine motor skill development. Many times, when children first start to learn arithmetic it is finger-based. Previous research indicated links between fine motor skills in kindergarten and concurrent or later mathematical development. *Perceptual and Motor Skills* published research to investigate whether the link between fine motor skills and numerical skills in preschoolers is from the involvement of finger representations in early mathematics.

The research study included 81 preschool children who were evaluated for fine motor skills and numerical tasks using receptive vocabulary and chronological age as control measures. The fine motor skills that were assessed was pegboard task, bead stringing and block turning. Numerical tasks were assessed using non-finger based (children were not allowed to count with their fingers) and finger-based (children were prompted to use their fingers). The results indicated the following:

- a positive and strong correlation between virtually all fine motor skills and numerical skills.
• only age and finger-based numerical skills were significantly related to fine motor skills.
• fine motor skills, independent of age and receptive vocabulary, contributed significantly to all numerical skill measures.
• the fine motor skill link appeared strongest with finger-based numerical skills.
• age, but not receptive vocabulary, also appeared to be a significant predictor of numerical skills generally and of nonfinger-based numerical skills.
• age was not a significant predictor of finger-based numerical skills.

The researchers discussed that preschool children with greater fine motor skills are better able to represent numbers with fingers which links to better performance on finger-counting and finger arithmetic tasks.

Check out these products to help preschoolers with fine motor skill development:

- Hands First for Learning Fine Motor Curriculum and Preschool Units
- Fantastic Fingers® Fine Motor Program
- Fine Motor Breaks
When observing preschoolers complete complex motor tasks, you may observe an increase in motor activation displayed as extraneous movements in body parts not actively involved in the current task. These extraneous movements are sometimes called motor overflow, mirror movements or associated movements. *Perceptual and Motor Skills* published research examining what is associated with motor overflow in preschool children. The study participants included 476 preschool children (average age: 3.88 years). Three assessments were completed on each preschooler. Contralateral associated movements (motor overflow) were measured with the Zurich Neuromotor Assessment (i.e. pegboard, alternating finger/hand movements and timed finger tasks). Inhibitory motor control was measured with the statue motor persistence subtest of the Neuropsychological Assessment for Children – children have to stand still with eyes closed with occasional distractions. Cognitive functioning was assessed with the Intelligence and Development Scales–Preschool.

The results indicated the following:

- a significant relationship between contralateral associated movements and motor persistence, selective attention, and visual perception which are all related to overall executive functioning.
• the intensity of the contralateral associated movements correlated with inhibitory control problems in preschoolers.
• no significant relationship between contralateral associated movements intensity and visuospatial working memory and figural reasoning.

The researchers concluded that this association of contralateral associated movements and lack of inhibitory control in younger, healthy, typically developing children requires further longitudinal studies and studies to identify motor overflow with specific neurodevelopmental disorders for early detection.

Read the Ultimate Guide to Self-Regulation to learn more about inhibitory control in children.

Yoga has been shown to have a significant effect on self-regulation in preschool children. Read more here.

Yoga Moves: Incorporating yoga into your therapy routine or your classroom movement breaks has the benefits of increasing focus, concentration, working memory, body awareness, executive function and self-regulation. These yoga cards can be hung on the wall of a therapy room, sensory room, or classroom and they can be used as cards you can pull out for a yoga breaks. The cards include visual pictures and do not include written descriptions to complete the poses. FIND OUT MORE.
Complimentary Therapies in Clinical Practice published research on the effectiveness of yoga training program on the severity of autism. The study consisted of 29 children (ages 7-15 years) with high functioning autism. The participants were randomly assigned to the yoga treatment group (received 24 sessions of yoga training over 8 weeks) or the control group. Parents were not aware whether their child was in the yoga treatment or control group. Parents or caregivers completed the autism treatment evaluation checklist (ATEC) at the beginning and the end of the intervention. Read more about the ATEC here. View the Autism Treatment Evaluation Checklist here.

The results indicated that:

- yoga poses had a significant effect on the following subscores of ATEC: sociability, cognitive/awareness, and health/physical behavior.
• there was no significant effect of yoga poses on the speech/language/communication subscores of the ATEC.

The researchers concluded that a yoga training program may help to reduce the severity of symptoms in children with autism.

Check out some of our amazing yoga resources for kids!
Do you know a child that is struggling with different situations? Perhaps it is learning a new routine, participating in a conversation or playing with peers. Whatever the situation, a social story may be helpful to inform children of what they can expect and what is expected of them. Writing a social story can be a daunting task. Here are some tips on how to write a social story with visual supports.

Use Different Types of Sentences

Carol Gray developed the concept of social stories. She recommends that social stories include descriptive sentences and directive sentences. You should write two descriptive sentences for every directive sentence that is included. Sentences that describe can be factual sentences, perspective sentences, cooperative sentences and affirmative sentences. Here are some examples:

- Descriptive/Factual Sentence: I ride a bus to school.
- Perspective Sentence: Sometimes, I get upset when I ride the bus.
- Cooperative Sentence: When I get upset, my friends can give me some space.
- Affirmative Sentence: Staying calm on the bus is good.
Sentences that direct can be directive or control sentences. Here are some examples:

- Directive Sentence (guide the child): I may ask the bus aide for help.
- Control Sentence (written by the child): If I get upset, I can listen to my music.

Prepare the Story

Pick the topic and prepare the story. Begin to write the text remembering to include 2 descriptive sentences for every 1 directive sentence. If possible, involve the children in the creation of the social story. This allows for ownership of the story and in turn, may increase compliance. Guide the children with open-ended questions if necessary.

Add Pictures

Determine what pictures you will add to the story. Place the picture above the text. Make sure the pictures are clear and represent the meaning of the story. Use photographs of the children, classroom or home or visual support pictures if you are unable to take photos.

Create the Book

If the book will be used to read to a large group, create a larger book. If the book will be in the class library, laminate it for durability. If the book is to be used with many children, make multiple copies so each child has his/her own.

Reading the Story

Be sure to set aside time to read the story to the children. The children should be a “ready to learn” state and attended to the topic. Read the book several times and have the children read it as well if possible. Discuss personal experiences regarding the story to make connections to real-world situations.

After the Story

Once you have read the story several times, try role-playing to deepen the child’s understanding of the behavioral expectations. Provide on-going positive feedback when the child exhibits the expected outcome or behavior following the use of the social story. Keep the social stories easily accessible so that children can re-read as necessary to review the expectations.

If you are looking for resources to help jump start social story writing check out:
Human Movement Science recently published research examining the association between fine motor skills, visual function, and reading in children. The participants included 19 children who were reading below expected grade and age level. In order to test whether the children identified with reading difficulties perform worse only on fine motor tasks that rely on binocular input, the researchers used two experimental tasks: bead-threading and peg-board. Each participant completed tests for stereoacuity, fusional vergence, amplitude of accommodation, and accommodative facility.

The results indicated:

- children with reading difficulties performed significantly worse on the bead-threading task.
- performance on the peg-board task was similar in both groups.
- accommodative facility was the only measure of binocular function significantly associated with motor performance.

The researchers concluded that normal binocular vision may provide an important sensory input for the development of fine motor skills and reading. Further research was recommended with a larger sample size.

Read more on the link between visual-motor integration and reading.

Need fine motor skill activities? Check out all of our resources here. Visual perceptual resources? Find out more here.
LESS AFFECTED HAND IN UNILATERAL CEREBRAL PALSY

Less Affected Hand in Unilateral Cerebral Palsy

When working with children who have hemiplegia, do you address the less affected hand in unilateral cerebral palsy? Or do you assume that the less affected hand is within normal limits for typical child development? Sometimes, the difference between the hands, gives the impression that the less affected hand is functional and age appropriate but in reality, there may be decreased function in both hands.

Neurorehabilitation and Neural Repair published research to compare hand function in 47 children, by timed motor performance on the Jebsen-Taylor Test of Hand Function (JTTHF) and grip strength of children with unilateral cerebral palsy to children with typical development. Each participant was evaluated for baseline hand skills and single-pulse transcranial magnetic stimulation testing to assess corticospinal tract and motor threshold.

The results indicated the following:

- the mean difference of the less-affected hand of children with unilateral cerebral palsy to the dominant hand of children of typical development the JTTHF was 21.4 seconds.
- the mean difference in grip strength was –30.8 N
- resting motor thresholds between groups were not significant.
- age was significantly associated with resting motor threshold.

Regarding the single-pulse transcranial magnetic stimulation testing:
• children with unilateral cerebral palsy ipsilateral pattern of motor representation demonstrated greater mean differences between hands than children with contralateral pattern of motor representation.

The typical pattern is a contralateral motor pattern where the motor-evoked potential response is in the more-affected hand following stimulation of the contralateral, lesioned hemisphere. An ipsilateral motor pattern describes an absent motor evoked potential response in the more-affected hand following stimulation of the lesioned hemisphere and a present motor-evoked response in the more-affected hand following stimulation of the nonlesioned hemisphere.

Overall, deficits in speed and strength of the less-affected hand in children with unilateral cerebral palsy were observed when compared to the dominant hand of typically developing peers.

The researchers concluded that the less-affected hand in children with unilateral cerebral palsy underperformed the dominant hand of children with typical development. The less affected hand should be assessed and intervene if necessary during rehabilitation. Future research should focus on bilateral hand function.

Therapeutic Play Activities for Children– Do you work with young children with cerebral palsy, autism spectrum disorders, developmental disabilities or delays? Are you in search of new, creative ideas for your therapy sessions? Do you need home exercise program sheets to encourage carryover of therapeutic activities? Do you need simple ideas that use materials that you have around your house, therapy room or classroom already? Do you work with children who receive constraint or bimanual therapy? *Therapeutic Play Activities for Children* includes 100 play activity sheets with a photo of the activity, purpose of each activity and materials list. The 12 tip sheets include topics such as modifications, peer interaction, guided play, prompts and several specifically for children with cerebral palsy. FIND OUT MORE INFORMATION.

The participants included 11 children with ASD and 11 children without ASD ages 5-12 years old. Each child was evaluated with the Test of Gross Motor Development-3 (TGMD-3) and postural sway measurements on a force plate during quiet standing on a solid and compliant surface.

The results indicated the following:

- sway area on a solid surface, age, and diagnosis were significant predictors of motor skill performance.
- the severity of ASD, as assessed by the Repetitive Behavior Scale-Revised (RBS-R), was not predictive of motor skills.
- children with ASD exhibited deficits in postural stability compared to children without ASD.

The researchers concluded that postural stability appears to influence the ability of children to perform gross motor skills.

Read more on postural stability and children with autism here.

Need activity ideas to encourage postural stability for children with autism?

Check out Classroom Activity Posters. This digital download is a collection of 16 exercise activities, 4 large posters and a brief, simple video demonstration of each exercise. The posters are divided into four groups: posture, alerting, ready to work and focus/balance. All of the exercises are performed in standing. Try these activities prior to starting fine motor activities, for posture breaks, to refocus students’ attention and for vestibular/proprioceptive input in the classroom.
As therapists, we frequently recommend standing frames for children with cerebral palsy or other developmental disorders. A question to ask yourself is do you frequently check for ease and comfort of use with the client? This is a question that needs to be asked over and over again. Children grow and change so rapidly. Comfort and ease of use for any device (be it a computer, stander, wheelchair, adapted toilet, etc) needs to be constantly assessed.

Child: Care, Health and Development published research on a semistructured interview with 12 young people with cerebral palsy regarding the positive and negative experiences regarding standing frame use. The interviews revealed that some young people:

- reported that although standing frames can be painful, it should be endured to improve their body structure and function.
- feel excluded from their peers, and others feeling as though standing frames helped them “fit in.”
- are not offered a choice about how and when they use their standing frame.
- that there are challenges to standing frame use such as manual handling, interference from siblings, and the lack of aesthetically pleasing standing frame designs.
The researchers recommend an exploration of each young person’s personal goals and experiences as well as therapeutic outcomes is necessary when prescribing standing frames.

Remember not to just ask the parent, teacher or caregiver but check with the clients themselves.

Read more on standing frames:

Dosing for Standing Programs

Standing Program and Cerebral Palsy

Effects of Standing Programs on Walking in Children with Cerebral Palsy

More resources for children with cerebral palsy:

Teaching Motor Skills to Children with Cerebral Palsy and Similar Movement Disorders: The ELECTRONIC version of *Teaching Motor Skills* is a must-have reference for all therapists who work with children with cerebral palsy. Whether you are a beginner or experienced therapist you will find the information concise, informative and very helpful to carry out everyday functional tasks including stretching with children with cerebral palsy. The book provides activity suggestions throughout the developmental sequence such as head control, tummy time, sitting, transitions, walking and beyond. **FIND OUT MORE.**
Everyone seems to LOVE these simple, black and white scissor projects. They are one of the most downloaded freebies on the website right now. Here is the color cut glue for December. It includes three black and white activity pages to practice coloring, cutting out simple shapes, planning out where to glue the pieces (the trickiest part) and then glue the shapes together to create the December themed pictures: ornament, tree, and holiday bell. Just print and it is all set to go. Remember to get your free copy when you enter your email on the post.

This activity encourages:

- scissor skills practice
- eye-hand coordination
- bilateral coordination
- motor planning
- sequencing

If you need more activities that require cutting, pasting and sequencing, check out Cut, Sequence, Paste and Draw Holiday edition. If you need fine motor, gross motor, AND visual motor activities, check out this December Packet.

If you need more specific information on the development of scissor skills, check out The Scissor Skills Book. Written by the Functional Skills for Kids (FSFK) team of 10 pediatric physical and occupational therapists with years of experience in the field, The Scissor Skills Book is the ultimate resource for tips, strategies, suggestions, and information to support scissor skill development in children.
This adorable holiday hat is FREE from Your Therapy Source. It is one of the templates from the Holiday Hat collection. Children can practice coloring, scissor skills and pasting. Step by step visual directions are included for the children to learn how to create the Elephant Holiday Hat. Print out the color or black and white template and get started.

Get the complete Holiday Hats digital download here. It includes 11 awesome templates in color and black and white.

DOWNLOAD ELEPHANT HOLIDAY HAT
Learning the concepts of left versus right can be very challenging for a child. Even as an adult, many of us second guess ourselves when asked which way is right or left. This skill is extremely important since many functional activities such as reading, counting, and map skills rely on left to right directionality.

This free directionality worksheet is from the Left or Right packet. You need to draw a circle around all the animals facing right. Draw an ‘X’ on all the animals facing left.

To extend this activity, try having the children face in the same direction as the animal. Move through the worksheet calling out random animal names. The child has to say what direction the animal is facing and then repeat that action with his/her own body. For example, if you say horse, the child has to say “the horse is facing left” and move his/her body to face left.

If you need more whole body activities to learn the concepts of directionality and left/right check out Right or Left Games. This digital packet helps children to
practice right and left discrimination, bilateral coordination, fine motor skills, balance skills, body awareness, motor planning and visual-spatial skills.

DOWNLOAD YOUR FREE LEFT OR RIGHT ANIMAL WORKSHEET

This activity is from the Left or Right worksheet packet. Left or Right Worksheets digital download includes 20 black and white worksheets to help learn the concepts of left and right. Directions include writing from left to right, coloring objects on the left or right, circle the correct direction, handwriting activities and more. Encourage visual-spatial skills.